

Jornadas técnicas "El lince ibérico (*Lynx pardinus*), mirando hacia el futuro" Madrid, 24-26 de septiembre de 2019

La comprometida genética del lince ibérico y su gestión

José A. Godoy Estación Biológica de Doñana, CSIC

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Departamento de Ecología Integrativa

Outline

- Is genetic erosion limiting the viability of Iberian lynx?
- What can we do about it?
- How to define safe/viable scenarios taking into account genetics?

The extinction vortex

Average genomic diversity

 The Iberian lynx has the lowest genomewide diversity reported

> ruz F, et al. omic erosion after ographic bottlenecks in the dangered Iberian lynx. *Genome* 100gy **17**, 251.

Coding sequences

Species	Species profile	No. of genes	πs (%)	πN/πS	dN/dS	
Ciona intestinalis	Highly abundant, invertebrate	1602	5.70	0.046		4
Drosophila simulans	Highly abundant, invertebrate	10996	2		03	
Oryctolagus cuniculus algirus1	Abundant, mammal		511		50ر	
Homo sapiens	Old bottle	sn'			0.229	
Chelonoidis nigra2	Fr b b	<u>.</u>	0.190	0.310	0.140	
Lynx por Sinu.	ign's	14028	0.028	0.286	0.212	
ngh rates of sli	ersity at coding s -synonymous to ghtly deleterious a e might have becc	synony	/mous t mode		•	1

Casas-Marcé M, Marmesat E, Soriano L, et al. (2017) Spatio-temporal dynamics of genetic variation in the Iberian lynx along its path to extinction reconstructed with ancient DNA. *Molecular Biology and Evolution* **34**, 2893–2907.

Extinction vortex in Doñana?

- Concomitant deterioration of genetic and demographic parameters
 - Increased non-traumatic mortality
 - Skewed sex ratios
 - Decreased litter size
 - 1993-2001: 3.1 kittens (n=18, SE= 0.18, range=2-5)
 - 2006-2008: 2.2 (n=9, SE= 0.15, range=2-3).

Conservation Biology

Ċ

Contributed Paper

Possible Extinction Vortex for a Population of Iberian Lynx on the Verge of Extirpation

FRANCISCO PALOMARES,*‡ JOSÉ ANTONIO GODOY,[†] JOSÉ VICENTE LÓPEZ-BAO,* ALEJANDRO RODRÍGUEZ,* SEVERINE ROQUES,* MIREIA CASAS-MARCE,[†] ELOY REVILLA,* AND MIGUEL DELIBES*

Contributed Paper

Heterozygosity-Fitness Correlations and Inbreeding Depression in Two Critically Endangered Mammals

MARÍA JOSÉ RUIZ-LÓPEZ,*‡‡ NATALIA GAÑAN,* JOSÉ ANTONIO GODOY,† ANA DEL OLMO,* JULIAN GARDE,‡ GERARDO ESPESO,§ ASTRID VARGAS,** FERNANDO MARTINEZ,** EDUARDO R. S. ROLDÁN,*§§ AND MONTSERRAT GOMENDIO*††§§

 Heterozygosity (inbreeding) correlates with the proportion of normal sperm

Survival and reproduction in captivity

- Higher mating success of admixed F1 males
- Early survival decreases with inbreeding
- ID expected to be much higher in the wild

Cuenca et al., in preparation

ID and extinction

Decrease in juvenile survial with inbreeding $S = S_0 e^{-bF}$

- PVA with Vortex
 for realistic lynx
 scenarios:
 - Even modest

 amounts of ID
 can substantially
 increase
 extinction
 probabilities

A lynx extinction vortex?

- \checkmark ID for survival and reproduction
 - ✓ Fertility, immune response, genetic diseases

Iberian lynx conservation

Genetic management: principles

- Rate of loss of diversity depends on effective population size (N_e)
- *N_e* depends on variance in reproductive success
 Ne ≈ 0.1-0.2 *N*
- Inbreeding depends on the relatedness between mates
- Genetic management strategy:
 - Equalize founder contribution (maximize Ne)
 - Taking into account relatedness among founders
 - Minimum kinship strategy
 - Avoid mating between close relatives

Genetics of captive population

Kleinman-Ruiz D, Soriano L, Casas-Marce M, et al. (2019) Genetic evaluation of the Iberian lynx ex situ conservation programme. *Heredity*.

The fitness consequences of genetic management

- Captive-born lynxes are less consanguineous than wildborn lynxes
- Should result in higher reproduction and survival of released animals
- Accumulating data from released animals suggests so
 - High survival rate
 - Large litter size

Genetic rescue in Doñana

- Following translocations:
 - Genetic diversity has increased
 - The population has increased

Reproductive output by parent ancestry

No significant results

Based on kittens observed with females within 9 months following reproduction

Genetic management of reintroductions

- Reintroduced populations will accumulate inbreeding and lose diversity very fast during the first few generations (founder effect)
- They will continue to do so at lower rates as long as they remain small and isolated

- Favourable scenario
- CC: 30 females
- Census ≈ 300
- $\Delta f \approx 0.25$ in 20 years
- *Ht/Ho* ≈ 70% in 100 years

Can be ammeloriated through genetic management

Genetic management of reintroductions

- Impossible to select breeders or design matings in wild populations, but ...
- Released animals can be selected to be minimally related among themselves
- Serial releases offer the possibility of selecting animals depending on the actual genetic composition (genealogy) of the recipient population
 - Again, based on minimum mean kinship
- Requires an intensive individual-based monitoring of reintroduced populations
- Once consolidated, management and monitoring can transition to population-based, using translocations when/where needed

Intensive individual-based genetic monitoring: census and genealogies

<u>Goals</u>

- Census of individuals
- Geo-referenced: territories, movements, immigrants,...
- Genealogies
- Genetic parameters

- <u>Methods</u>
 - Intensive sampling of faeces
 - Individual identification
 - Parentage assignment
 - Kinship estimates

Using faeces to monitor species

Monitoring: novel SNP markers

- Novel and more powerful panel of molecular markers for:
 - Population genetics,
 - Non invasive genetic monitoring
 - Genetic management

Kleinman-Ruiz D, Martinez-Cruz B, Soriano L, *et al.* (2017) Novel efficient genomewide SNP panels for the conservation of the highly endangered Iberian lynx. *BMC Genomics* **18**, 556.

Genetics in the definition of FRVs

- Since 2012 genetic diversity is explicitly included as a criterion for the favourable reference range in the Habitats Directive (Evans & Arvela 2011).
 - Page 16: "The following factors should be considered when estimating Favourable Reference Range (FRR) for both species and habitat types:
 - Current range;
 - Potential extent of range taking into account physical and ecological conditions (such as climate, geology, soil, altitude);
 - Historic range and causes of change;
 - Area required for viability of habitat type/species, including consideration of connectivity and migration issues.
 - Variability including genetics (Laikre te al., 2009) "
 - Page 18: "Favourable Reference Populations should be based on the ecology and genetics of the species."
- Developed and updated in Bijlsma et al. (2018)

50/500 rule for genetic viability

- Widely used "rule of thumb"
 - Ne > 50 to avoid short term ID
 - Based on observation in zoos and animal breeding
 - $\Delta f = 0.01$ por generación
 - Ne > 500 to assure evolutionary potential
 - Derived from theoretical expectations for mutation-drift equilibrium for quantitative traits
 - $\Delta f = 0.001$ or generación
- Ne typically 1/10 or 1/5 of adult numbers
- Recently updated to 100/1000 (Frankham et al., 2014)

Incorporating genetics to PVA (Frankham et al. 2014)

- PVA typically used to define MVP based on extinction probabilities (demographic viability)
 - Can also be used to define MVP based on genetic objectives (genetic viability)
 - MVP for genetic viability >>> MVP for demographic viability
- PVA in *Vortex* can consider ID and thus model short term fitness effects
 - Applied to juvenile survival
 - Parameterized by the number of lethal equivalents
 - 3.14 (default) often used; 12 more appropriate for total fitness
- Often results in Ne/N ratios of 0.3 (higher than observed 0.2)
 - Lower variance in reproductive success (Poisson)
- It does not explicitly model long term adaptive potential
- Call for standardization in MVP definition
 - 99% probability of persistence in 40 generations

Beyond one single closed panmictic population

- Species typically occur as metapopulations
- The effective size of the metapopulation is not necessarily the sum over subpopulations
 - Only if panmicitic
 - The lower the migration rate the higher the global the effective size
- Even low levels of migration can hamper genetic erosion
 - "One-migrant-per-generation" rule of thumb is unrealistic
 - Depend on the number of subpopulations, their effective sizes, and the pattern of gene flow among them.
- Need to explicitly consider the combined effects of size and migration in modelling
- Migration is dependent on distance and landscape matrix

Spatially-explicit

individual-based modelling (Revilla et al., 2015) Asistencia técnica para el análisis de viabilidad espacialmente explícito de posibles escenarios de reintroducción de lince ibérico en España (REF.: TEC0003132)

Conclusions: lessons learned

- The Iberian lynx is one of the most genetically eroded species
- Accumulating evidence suggest that inbreeding is limiting reproduction and survival (ID)
- Simulations suggest observed levels of ID are enough to reduce population viability
- Genetic management in captivity and translocations ameliorates inbreeding and ID
- Incipient reintroduced populations are expected to accumulate inbreeding fast
- This can be compensated by genetic management consisting in releasing animals minimally related to existing ones
- Critical to know the census and genealogy of the reintroduced population
- This can be achieved with an intensive individual-based non-invasive genetic monitoring program
- Long-term viability assessments need to explicitly consider genetic issues and genetic goals
- Existing spatially-explicit individual -based models can address both demographic genetic viability efficiently and realistically

Acknowledgments

The ConGen group

- Elena Marmesat (PhD)
- María Lucena (PhD)
- Daniel Kleinman (PhD)
- Mireia Casas Marcé (PhD)
- Begoña Martínez-Cruz (Posdoctoral Researcher)
- Laura Soriano (Technician)

- Collaborators
 - EBD (Lynx demography and ecology)
 - Eloy Revilla
 - Alejandro Rodríguez
 - Francisco Palomares
 - Miguel Delibes
 - The Iberian lynx genome consortium (genomics)
 - MNCN (Reproductive physiology)
 - Eduardo Roldán
 - INIA (Genetic management)
 - Jesús Fernández
 - LIFE Projects
 - Ex situ conservation Program

¡Gracias!